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Ansatz-independent solution of a soliton in a strong dispersion-management system
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We introduce a theoretical approach to the study of propagation in systems with periodic strong-
management dispersion. Our approach does not assume any ansatz about the form of the solution nor does it
make use of any average procedure. We find an explicit solution for the pulse evolution in the fast dynamics
regime~distances smaller than the dispersion period!. We also establish the equation of motion governing the
slow dynamics of an arbitrary pulse and prove that the pulse evolution is nonlinear and Hamiltonian. We solve
this equation and find that a nonlinear solitonlike solution occurs self-consistently in the form of an asymptotic
stationary eigenfunction of the Hamiltonian.

PACS number~s!: 42.65.Tg, 41.20.Jb
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I. INTRODUCTION

A lot of effort has been devoted recently to the und
standing of nonlinear electromagnetic propagation
dispersion-management~DM! systems. The experimenta
feasibility of this kind of propagation has been demonstra
in stretched-pulse lasers@1# and optical communication sys
tems@2#, thus drawing considerable interest for its techni
advantages with respect to traditional soliton transmiss
techniques. Pulse evolution presents a very peculiar beha
in DM systems where dispersion is periodic and changes
sign along the fiber. Like media with constant negative d
persion, where stationary solitons were known to exist lo
ago @3#, DM systems seem to possess solitonlike solutio
that behave as stationary pulses at long distances. How
they evolve very differently within one dispersion perio
where they experiment a severe compression-broade
process not present in ordinary solitons. Although a lot
work has been done to provide a suitable mathematical
scription of this new type of evolution, most of it relies o
the assumption of an ansatz, or a specific property, abou
solution that is sought. Variational methods are intrinsica
built on a trial function for the solution@4–11#. Average
dynamics methods provide evolution equations for avera
quantities, which can be solved under certain assumpt
about the form of the solution@12–15#. Another approaches
resort to numerical analysis@16# or to truncated modal evo
lution equations@17#.

Using an adapted Green-function formalism for DM sy
tems, we can give a description of the pulse evolution at
position inside one dispersion period~fast dynamics! without
using any ansatz or assuming any specific property.
method is especially well adapted to study strong DM s
tems since it incorporates a perturbative treatment of
small parameter controlling strong DM effects. In additio
we derive the equation that provides the global evolution
a pulse after many dispersion periods~slow dynamics! with-
out considering any average or truncation procedure. T
equation is exact in first-order perturbation theory. Fina
we solve this equation and find that a nonlinear solitonl
PRE 621063-651X/2000/62~5!/7320~10!/$15.00
-
n

d

l
n
ior
ts
-
g
s
er,

ng
f
e-

he
y

d
ns

-
y

ur
-
e

,
f

is
,
e

solution occurs self-consistently in the form of an asympto
stationary eigenfunction of the Hamiltonian.

II. PROPER LENGTH METHOD FOR FAST DYNAMICS
EVOLUTION

Our starting point is the periodic dispersion nonline
Schrödinger equation,

]u

]z
52 i

D~z!

2

]2u

]t2
1 iduuu2u, ~1!

whereD(z) is the periodic dispersion andd is the nonlinear
coefficient.

A linear fiber with homogeneous dispersion is a particu
case of Eq.~1!, whereD(z)5D and d50. In such a case
the differential equation is identical to a Schro¨dinger equa-
tion for a one-dimensional~1D! free particle wherez plays
the role of time andt the role of position. It is well known
that a suitable description of the wave-function evolution c
be given by introducing the unitary evolution operatorU(t)
5exp(2iHt), where H is the free Hamiltonian (H
521/2m]2/]x2). When applied to our case of interest, th
means that the vector representing the field at positionz can
be written as

uu~z!&5e2 iHzuu~0!&⇔]u

]z
52 i

D

2

]2u

]t2
, ~2!

whereH52(D/2)(]2/]t2).
We observe that a necessary condition for the above r

tion to be true is that the Hamiltonian is time-independe
(z-independent, in our case!. If the fiber dispersion varies
with z, thenH→H(z) and the previous relation is no longe
true. However, let us imagine an alternative evolution pro
lem where the evolution parameter is given by a differe
variable,t, that we will call proper lengthfor reasons that
will become apparent soon. By definition, this evolutio
problem corresponds to a homogeneous fiber withD51.
7320 ©2000 The American Physical Society
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Thus, following the previous equivalence expressed in
~2!, the pulse field for this problem, nowu(t), will satisfy

uu~t!&5e2 iH tuu~0!&⇔]u

]t
52 i

1

2

]2u

]t2
. ~3!

Up to now, both problems are unrelated. At this point,
us assume thatt is a function ofz, t5t(z). Then, Eq.~3!
still holds.

uu„t~z!…&5e2 iH t(z)uu~0!&⇔ ]u

]t~z!
52 i

1

2

]2u

]t2
. ~4!

It is clear that, in this case, Eq.~2! appears as a particula
case of the above equation whent(z)5Dz. In the most gen-
eral case, however, the homogeneous problem in the pr
length t maps into a differentz-evolution problem. This is
easily checked by performing the change of variable„t
→z⇒]/]t(z)→@1/t8(z)#(]/]z)…. The differential equation
satisfied by the pulse field in thez variable,ũ(z)5u„t(z)…, is
thus

]ũ

]z
52 i

t8~z!

2

]2ũ

]t2
. ~5!

A direct comparison with Eq.~1! for the linear case re
veals the following crucial relation:

t8~z!5D~z!⇔t~z!5E
z0

z

dz8D~z8!. ~6!

This property shows that any inhomogeneous linear pr
lem, given by az-dependent dispersion functionD(z), is
equivalent to a homogeneous problem with dispersionD
51 in the proper length functiont(z), the relation between
both being given by Eq.~6!. In the general case, the prop
lengtht has no length dimensions,@t#5T2. However, since
it plays the same role asz in the wave equation, we will keep
this name for it. The proper length has a clear physical me
ing. According to the integrated expression in Eq.~6!, it
represents the accumulated dispersion over the distanc
terval under consideration. However, here, in its condition
evolution variable,t plays a different role, which turns out t
be very particular in DM systems. In a DM system, whe
the sign of dispersion changes along one period, the pro
lengtht, unlike the original parameterz, evolvesdifferently
in the positive and negative group velocity dispersion~GVD!
regions@dt/dz5D(z)#. There is a forward~ordinary! evo-
lution in the positive GVD regions, whereas evolution is r
versed~backward! in the negative GVD sections. For th
reason, one finds the typical breathing behavior of pulse e
lution even in linear DM systems, wheng50 ~see@17#, for
instance!.

Now, we consider the general case of propagation i
nonlinear medium with inhomogeneous dispersion,
scribed by Eq.~1!. We have learned how to deal with th
most general case ofz-dependent dispersion in the line
case. In the nonlinear case, it is also very interesting to
troduce the concept of proper length. The way of introduc
.
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the proper length functiont(z) in Eq. ~1! is simple. We
divide both sides of Eq.~1! by D(z), use the equivalence

1

D~z!

]u

]z
5

1

t8~z!

]u

]z
5

]u

]t
, ~7!

and introduce thet-dependent ratiog(t)[d/D(t) @sinceD
is z-dependent, it also depends ont through the inverse re
lation z5t21(t)#. This equation becomes, in thet variable,

]u

]t
52 i

1

2

]2u

]t2
1 ig~t!uuu2u, ~8!

where, for convenience, we are using the same notation
u(t) and u(z) provided there is no confusion@before we
have distinguished between them:ũ(z)5u„t(z)…]. The
t-dependent functiong(t) acts now as an inhomogeneou
nonlinear coupling and has dimensions ofT22. It is conve-
nient to use the dimensionless time variablest̄ 5t/t0 , t̄

5t/t0
2, and ḡ5gt0

2, where t0 is a typical time scale of the
problem, e.g., the initial pulse width. Equation~8! remains
exactly the same but witht, t, and g substituted by their
normalized counterparts. For this reason, and from now
we will consider all time variables properly normalized, a
though we keep using the unbarred notation.

The normalized coupling constant has an interest
physical meaning. Its absolute value is merely the ratio
tween the dispersion and nonlinear lengthsLD /LNL , defined
as

LD5
t0
2

uDu
and LNL5

1

d
. ~9!

The dispersion lengthLD and the nonlinear lengthLNL
provide the length over which the dispersion and nonlin
effects become important for pulse evolution along a fiber
length L. By comparing these three lengths, we can de
mine which effects are relevant or not for pulse propagati
We will assume here that nonlinear effects are less impor
than dispersion ones, so thatLD'L and LNL@LD , and
therefore the effective coupling functiong(t) will be small.
Notice that the coupling functiong(t) is not constant but
position-dependent and it will have to be treated carefully
order to introduce a real constant parameter, letg be the
maximum value that theLD /LNL ratio can reach over one
dispersion period. Thenug(t)u<g;t, and we can write the
coupling constant function asg(t)5gl(t), where u l (t)u
<1;t. In this way, we can give a rigorous perturbative a
proach in terms of the now real coupling constantg and
calculate, in principle, arbitrary order corrections to the pu
dispersion pulse solution.

We are interested in finding a solution of Eq.~8!,
u(t,t;g), that exists in the limitg→0. We will assume that
a small nonlinearity produces small perturbations in
pulse profile, so that the amplitude can be expanded i
power series ing,

u~ t,t;g!5u0~ t,t!1gu1~ t,t!1g2u2~ t,t!1•••. ~10!
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We plug now the previous expansion in both sides of Eq.~8!
and equal coefficients of the same order ing.

To lowest order

]u0

]t
52 i

1

2

]2u0

]t2
. ~11!

To orderg

]u1

]t
52 i

1

2

]2u1

]t2
1r0~ t,t!, ~12!

wherer0(t,t)5 i l (t)uu0u2u0 acts as a density in an activ
medium.

In general,

]un

]t
52 i

1

2

]2un

]t2
1rn21~ t,t!, ~13!

where the (n21)th order ‘‘density,’’ rn21, can be con-
structed systematically from previously known lower ord
solutions.

In this way, we have transformed the original nonline
equation in a set of linear differential equations that can
solved recursively. All the nonlinear corrections verify inh
mogeneous linear equations, with source terms, that inv
the same differential operator,]/]t1( i /2)]2/]t2. All of
them can be solved by means of the Green-function meth
The associated Green problem to be solved first is

S ]

]t
1

i

2

]2

]t2D G~ t2t8,t2t8!5d~ t2t8!d~t2t8!.

~14!

According to the Green-function method, the solution
the field has to be of the form

uNL~ t,t!5E dt8E
tmin

tmax
dt8G~ t2t8,t2t8!r~ t8,t8!,

~15!

wheretmin andtmax are the minimum and maximum, respe
tively, of the interval where the functiont is defined, andr
is a generic source density function. However, we have to
very careful in defining the integration domain in thet vari-
able. As we have already seen, evolution inz is unidirec-
tional whereas evolution int is forward or backward de
pending on the sign of the dispersion. Therefore,
integration domain is ambiguous int, although it is not in
the z variable. Consequently, in order to deal with the in
gration limits of Eq.~15! properly, we transform the integra
in t8 in an integral inz8. The result is

uNL~ t,z!5E dt8E
2L/2

L/2

dz8G̃1~ t,t8;z,z8!r̃~ t8,z8!, ~16!

where r̃5D(z)r, and G̃1 represents the advanced Gre
function in thez variable, satisfying
r

r
e

e

d.

r

e

e

-

S ]

]z
1

iD ~z!

2

]2

]t2D G̃1~ t2t8,z2z8!5d~ t2t8!d~z2z8!

~17!

and the advanced conditionG̃1;u(z2z8) @u() being the
Heaviside function#. The relation betweenG̃1 and thet
Green functionG depends on the sign of the dispersion. Th
is so because thez→t mapping is not one-to-one and, ther
fore, the change of variable becomes ambiguous. In orde
avoid this ambiguity, we divide the@2L/2,L/2# interval in
smaller subintervalsD i of alternating dispersionDi . In each
of these subintervals with a well-defined sign of the disp
sion, thez→t mapping is one-to-one, and the ambigui
disappears. We choose now a generic subintervalD i to per-
form the change of variable. Dividing Eq.~17! by Di(z)
5dt(z)/dz,zPD i , introducing the proper length functio
t(z), and taking into account the property of thed function,

d„t~z!2t~z8!…5
1

uDi~z!u
d~z2z8!

5
1

sgn~Di !Di~z!
d~z2z8!, ~18!

we obtain the equation for the Green function in thet vari-
able for positive and negative dispersion subintervals,

S ]

]t
1

i

2

]2

]t2D Gi~ t2t8,t2t8!5sgn~Di !d~ t2t8!d~t2t8!,

~19!

where t5t(z) and t85t(z8). Notice that in the positive
GVD sectors we obtain the standard Green-function equa
for an ordinary forwardt propagation,G;u(t2t8). How-
ever, for negative GVD we obtain an extra minus sign in t
right-hand side of Eq.~19!. This is a consequence of back
ward t propagation,G;u(t82t), because then thet de-
rivative produces an extra sign,@du(t82t)#/dt52d(t
2t8).

The solution of this Green-function problem is we
known. In the positive GVD intervals, we have

G̃1~ t,t8;z,z8!5G1~ t2t8,t2t8!

5u~t2t8!G0~ t2t8,t2t8!,

where t5t~z!, t85t~z8!, ~20!

whereas for the negative GVD sections,

G̃1~ t,t8;z,z8!5G2~ t2t8,t2t8!

5u~t82t!G0~ t2t8,t2t8!,

where t5t~z!,t85t~z8!. ~21!

Notice that these equations show, as pointed out before,
t evolution occurs in the same direction asz evolution in the
positive GVD intervals (t.t8, whenz.z8), while just the
opposite occurs in the negative GVD sections (t,t8, when
z.z8). The form of G̃1 is completely determined by th
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above expressions, because the functionG0 is merely the
representation of the unitary evolution operator in the ti
domain,

G0~ t2t8,t2t8!5^tue2 iH (t2t8)ut8&

5ei (p/4)S 1

2p~t2t8!
D 1/2

e2 i [( t2t8)2/2(t2t8)] .

~22!

These properties allow us to write a closed expression
G̃1 ,

G̃1~ t,t8;z,z8!5u~z2z8!G0„t2t8,t~z!2t~z8!…. ~23!

Now we split up the integral~16! in a sum over the partition
@2L/2,L/2#5ø i 51

N D i , where D i5@zi 21 ,zi # ~we assume
that zPDn , 1<n<N),

uNL~ t,z!5(
i 51

N E dt8E
D i

dz8u~z2z8!

3G0„t2t8,t~z!2t~z8!…r̃~ t8,z8!

5 (
i 51

n21 E dt8E
zi 21

zi
dz8G0„t2t8,t~z!2t~z8!…

3 r̃~ t8,z8!1E dt8E
zn21

z

dz8G0„t2t8,t~z!

2t~z8!…r̃~ t8,z8!. ~24!

The previous equation solves the ambiguity in the defi
tion of the integration domain of the Green formulation
the t variable. The inverse oft(z8) is now a true single-
valued function in eachD i . Under these conditions, th
change of variablesz8→t8 is now allowed in each of the
integrals appearing in the sum overD i ’s in Eq. ~24!. The
Jacobian of the transformation,@dt(z8)/dz8#21, is precisely
the inverse of the dispersion function inD i . The result is
~recall thatr̃5Dr!

uNL~ t,t!5 (
i 51

n21 E dt8E
t i 21

t i
dt8G0~ t2t8,t2t8!r i~ t8,t8!

1E dt8E
tn21

t

dt8G0~ t2t8,t2t8!rn~ t8,t8!.

~25!

The above equation gives the most general answer to
problem of finding any arbitrary order nonlinear correcti
once the densityr has been constructed out of lower ord
contributions. At the same time, it incorporates the effects
the inhomogeneity and the sign change in the dispers
Using recursively this equation and the equations giving
different order terms of the densityr, we could solve pertur-
batively, to any order in the coupling constantg, the problem
of pulse propagation in a nonlinear medium with inhomog
neous and sign-changing dispersion. It is clear that, altho
the formalism is completely general, realistic calculations
e

r

i-

he

f
n.
e

-
h
f

high order terms can be extremely involved. In any case,
of great interest to have a completely general expression
can be used to demonstrate general properties, valid to
orders in perturbation theory, that will affect any solution f
which a series expansion can apply.

III. ANALYTICAL RESULTS FOR THE PROPAGATION
OF A GAUSSIAN PULSE

In the first part of this section, we will find the leadin
term of the perturbative expansion~10!, that is, the linear
term u0. This is given by the operator relation Eq.~4! ex-
pressed in the time domain as follows:

u0„t,t~z!…5E dt8G0„t2t8,t~z!…u0~ t8,0!, ~26!

where

G0„t2t8,t~z!…5^tue2 iH t(z)ut8&

5ei ~p/4!S 1

2pt~z! D
1/2

e2 i [( t2t8)2/2t(z)] .

~27!

This relation is valid for any propagating pulse shape.
important case of propagation is that of a Gaussian pulse.
us assume that at the initial fiber positionz0 @t(z0)50, ac-
cording to Eq.~6!#, the pulse has the Gaussian form

u0~ t,0!5e2t2/2t0
2
, ~28!

where t0 is the pulse width. Then, a straightforward use
the evolution integral~26! yields the well-known expression
for the field at positionz @17#,

u0„t,t~z!…5
t0

At0
22 i t~z!

e2t2/$2[t0
2
2 i t(z)] %. ~29!

In fiber ring lasers or in dispersion managed communi
tion systems, dispersion changes in the different sections
fiber is made of, but since each section is fabricated with
same material, dispersion is constant in each piece. In w
follows, we will restrict ourselves to a simple case of a D
system, namely, that corresponding to zero average peri
dispersionD(z1L)5D(z) in a symmetric dispersion ma
system of lengthL,

D~z!5H 2d, zP@2L/2,0@ ,

1d, zP@0,L/2@ .
~30!

Our next step will be to find the first nonlinear perturb
tive correction to the problem of the fiber given above. Th
is, we want to evaluate the integral~25! for this case, where
t(z)5d(uzu2L/2), andr05 i l uu0u2u0,
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u1~ t,z!52 i E dt8E
0

t(z)

dt8G0„t2t8,t~z!2t8…

3uu0~ t8,t8!u2u0~ t8,t8!1u~z!2i

3E dt8E
t1

t(z)

dt8G0„t2t8,t~z!2t8…

3uu0~ t8,t8!u2u0~ t8,t8!, ~31!

wheret152dL/(2t0
2) in this case.

Now we introduce the lowest order solution,u0(t,t),
from Eq. ~29!, into Eq. ~31!. The integration over the time
variable can be done because it has the form of the lin
evolution of a Gaussian pulse. Consequently, the first-o
nonlinear contribution is the result of an integral over t
intermediate proper length variablet8. If we set t051, so
that all time-dependent magnitudes will be immediately n
malized to the original Gaussian pulse widtht0, we can write
the following expressions for the linear and the first nonl
ear correction~the dependence oft on z is always assumed
although it is not written explicitly!:

u0~ t,z!5
1

A12 i t
expF2

t2

2

1

~12 i t!G ~32!

and

u1~ t,z!52 i E
0

t

dt8
1

A~12 i t8!D~t,t8!

3expF2
t2

2 S 31 i t8

D~t,t8!
D G1u~z!2i E

t1

t

dt8

3
1

A~12 i t8!D~t,t8!
expF2

t2

2 S 31 i t8

D~t,t8!
D G ,

~33!

whereD(t,t8)5113i t81t(t823i ).
Equation~33! gives the value of the first nonlinear corre

tion at an arbitrary point of the fiberz. It is also of great
interest to know the net effect of the nonlinear perturbat
after the Gaussian pulse has completed an entire round.
contribution is the value ofu1 at the pointz5L/2. The as-
sociated proper length is zero, which makes this contribu
easier to handle,

u1S t,
L

2D52i E
t1

0

dt8S 1

112i t813t82D 1/2

3expF2
t2~t823i !

6t822i
G . ~34!

In order to check the validity of the analytical expressi
for the first-order correction, we have performed an alter
tive numerical simulation of the Gaussian pulse evolution
a dispersion managed system with dispersion map given
Eq. ~30! within one period. This simulation is based on
ar
er

-

-

n
his

n

-
n
by

standard split-step Fourier procedure@19#. On the one hand
we calculate the first nonlinear amplitudeu1 using the ana-
lytical equation~33!. On the other hand, we evaluate nume
cally the complete pulse profile amplitudeu(t,z,g) through
our simulation code. We obtain the full nonlinear contrib
tion within one period by substracting the linear partu0 from
the previously numerically evaluated functionu. Now we
can compare directly the first nonlinear correctiongu1 with
this full nonlinear contribution. According to the perturbativ
expansion~10!, they should agree up to orderg2. In Fig. 1,
we represent the error in the real and imaginary parts of
functional difference (u2u02gu1) divided byg2 as a func-
tion of g, where the error is calculated as the maximum
the absolute value of these differences in both the time
zP@2L/2,L/2# domains. In order to check the consisten
of the expansion, we plot these errors for two different v
ues oft1. In all cases, the error curves are consistent with
O(g2) approximation. This check shows simultaneously t
precision achieved in the analytical calculation and the c
sistency of the proper length Green-function method.

We also present in Fig. 2 and Fig. 3 thez evolution for
both the total and the first nonlinear pulse amplitudes,u and
u1, respectively. Figure 2 has been evaluated using the s
step Fourier numerical method, whereas Fig. 3 is obtai
from the analytical expression~33!. Notice, however, that
according to the accuracy of the expansion, represente
Fig. 1, the latter plot would not be distinguishable from th
of the full nonlinear correction provided by the numeric
simulation. For the same reason, the analytical perturba
result for u would provide the same plot as the numeric
method used in Fig. 2.

FIG. 1. Numerical consistency check of the analytical solut
for evolution within one period.~a! Error in the real part of the
functional difference (u2u02gu1)/g2 as a function of the cou-
pling constantg. ~b! Same for the imaginary part. We plot thes
errors fort1521.5 ~squares! andt1522 ~circles!.
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IV. EXACT DERIVATION OF THE EQUATION
OF MOTION IN THE SLOW DYNAMICS REGIME

If we are interested in the behavior of the pulse amplitu
always at a particular reference plane of the period of
fiber, sayz52L/21 jL , j PZ ~the beginning of the negativ
dispersion section!, we need only to know the values ofu0
andu1 at t(L/2)50. In such a case, the first summand in E
~33! vanishes and the general expression simplifies.
Gaussian pulse modifies its amplitude and phase even
single round, as is apparent from the analytical result gi
in Eq. ~34!. A similar result is obtained for a pulse describ
by an arbitrary Hermite-Gauss function. In general,
arbitrary pulse written as a linear combination of the norm
ized Hermite-Gauss basis,u(t,t)5(nln(t)h̄n(t)e2t2/2

(* h̄nh̄me2t25dnm), will evolve over one dispersion perio
and will experiment a net variation when a full round
completed (t50). The amount that an arbitrary puls
changes after one dispersion period can beexactlyevaluated,
up to orderg2, because we know how to calculate analy
cally the variation experimented by the elements of
Hermite-Gauss basis in which the pulse amplitude is
panded. More explicitly, we can evaluate the increment
perimented by the components of the pulse amplitude in
Hermite-Gauss basis, thel vector, up to orderg2. Let ln

( j ) be
the n component of the pulse vector at the spatial slicezj5

FIG. 2. z evolution, within one dispersion period, of the mod
lus of the total amplitude,uuu, for a Gaussian pulse witht1522
andg50.04.

FIG. 3. z evolution, within one dispersion period, of the mod
lus of the first nonlinear correction,guu1u, for a Gaussian pulse with
t1522 andg50.04.
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2L/21 jL characterizing the reference planej. Then we can
obtain the value of this component at the next refere
plane atzj 11 as follows:

ln
( j 11)5ln

( j )1 iH nm
( j ) lm

( j )1O~g2!,

Hnm
( j ) 5

2g

L
lk

( j )* Tnkmplp
( j ) , ~35!

whereTnkmp is a j-independent fourth-order tensor that d
pends ont1 exclusively. TheT tensor can be analytically
calculated and its value is given by the following expressi

Tnkmp5
1

NnNkNmNp
tnkmpHnkmp, ~36!

where the normalization constantNn is

Nn5AAp2nn! ~37!

and

tnkmp5E
t1

0

dt8
1

A11t82 S 11 i t8

12 i t8
D [n1k2(m1p)]/2

, ~38!

Hnkmp5E
2`

`

dx )
l 5n,k,m,p

h̄l~x!exp~22x2!. ~39!

Using the definition of the incomplete beta function~see
@20#! we can write

tnkmp5 i H B(11 i t1)/2S 11n

2
,
12n

2 D2B1/2S 11n

2
,
12n

2 D J ,

~40!

where

n5n1k2m2p. ~41!

The T tensor enjoys nontrivial symmetry properties: it
symmetric under the permutationsn↔k and m↔p and, in
addition, verifies the self-adjoint-like conditionT(mp)(nk)

5T(nk)(mp)* . Because of these properties the matrixH ( j ) is
self-adjoint H ( j )5H ( j )† at all reference planes. This is a
important property for the dynamics, because up toO(g2)
terms, Eq.~35! is equivalent to the matrix equationl ( j 11)

5exp(iH(j)L)l(j), and thus the self-adjoint character ofH ( j )

gives rise to a unitary evolution operator. The unitary ch
acter of the pulse evolution guarantees the conservatio
the pulse power* uu(t)u25(nulnu2 in first-order perturbation
theory. The above equations can be considered as a disc
zation of a differential equation in a continuous variableZ
such that its discretized values coincide with the positions
the reference planeszj . This is a rather realistic situation
because we are interested in the slow dynamics of pu
especially after very long distances, much larger than
dispersion periodL. Since the lattice spacing of the discre
zation is L and it is small over long distances, we ca
formulate the continuous counterpart of Eq.~35! in the form
of a differential master equation for the slow dynami
evolution:
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2 i
dln~Z!

dZ
5Hnm~Z!lm~Z!1O~g2!, ~42!

where as beforeHnm(Z)52g/Llk* (Z)Tnkmplp(Z).
Either in its discrete or continuous form, the evolutio

equation shows that the slow dynamics of an arbitrary pu
is nonlinear and Hamiltonian, as in ordinary solitons. Ho
ever, the explicit form of the evolution is different. It is cle
that theH matrix operator plays the role of a nonlinear se
adjoint Hamiltonian governing the slow dynamics evoluti
of the pulse propagation. It is important to stress that
ansatz nor variational approach has been followed to ob
the previous evolution equation. Although from the form
point of view our master equation can have some similari
to an average equation, the way in which we have obtaine
differs qualitatively from standard average procedures. T
proper length Green-function method permits the determ
tion of the pulse amplitude exactly within one period in firs
order perturbation theory for an arbitrary dispersion m
independent of the initial pulse profile. In particular, we c
evaluate the pulse amplitude~exactly in this order of pertur-
bation theory! at the end of the dispersion map. This is t
information included in the master equation~42!, which
therefore represents a different approach to the slow dyn
ics evolution problem from that adopted by averaging
original equation of motion@18#.

Although the master equation was derived for a dispers
map such as that presented in Eq.~30!, our method is flexible
and permits us to incorporate other dispersion maps
would lead to slightly different evolution equations. For e
ample, if the average dispersion is different from zero, o
can prove that the nonlinear Hamiltonian operatorH is modi-
fied by the presence of a linear term. If, besides, the ave
dispersion is small, as is usual in this kind of system, thenD̄
can be treated perturbatively to obtain

2 i
dln~Z!

dZ
5D̄Hnm

0 lm~Z!1Hnm
1 ~Z,D̄ !lm~Z!1O~g2,D̄2!,

~43!

whereH0 is a constant second-order tensor~independent of
t1 andg) andH1 is given by

Hnm
1 ~Z,D̄ !52

g

L
lk* ~Z!Tnkpm~D̄ !lp~Z!, ~44!

where T(D̄) includes the first-order correction to the ze
average dispersion tensorT.

These equations provide the exact slow dynamics~long
distance! evolution of an arbitrary pulse in a strong DM sy
tem in first-order perturbation theory.

V. THE DM SOLITON AS A STATIONARY SOLUTION

The question of the existence of soliton solutions can
put forward in an easy way now. A soliton will be a statio
ary solution of the long-distance evolution equation, wh
in its continuous form will be given bylS(Z)5aSeibSZ.
Therefore, it will have to fulfill the stationary matrix eigen
value equation,
e
-

o
in
l
s
it
e

a-

,

m-
e

n

at

e

ge

e

HSaS5bSaS , ~45!

besides the self-consistency condition

~HS!nm5
2g

L
~aS* !kTnkmp~aS!p. ~46!

In order to preserve the highest degree of generality,
perform the following scale transformations in the evoluti
equation:Z→(2g/L)Z and H→(L/2g)H @consequently,b
→(L/2g)b as well#. In this way, the evolution equation be
comes simultaneously dimensionless and independentg
andL. Only thet1 dependence remains through the tensorT.

In order to solve the soliton equations, we will follow
strategy based on physical grounds. Experimental and
merical results indicate that a Gaussian pulse launched
DM system will evolve to turn into a stationary solution
long distances. Physically, as in ordinary solitons, this e
lution corresponds to a radiation process in which the pu
reshapes as it evolves until it reaches its asymptotic stat
ary form. This radiation has the form of dispersive wav
that modify the pulse energy as the input pulse evolves
become the fundamental soliton@19#.

FIG. 4. Axial evolution of the components of thel ( j 11)/l ( j )

ratio for an initial Gaussian pulse using the projection prescripti
The normalized axial distanceZ is dimensionless andt1522. The
number of Hermite-Gauss functions used is 10.~a! Asymptotic evo-
lution of the modulus to one.~b! Asymptotic evolution of the nor-
malized phase (phase/2g) to the stationary propagation constantbS

~horizontal dashed line!.
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In what follows, we will face the radiation problem in a
alternative way by resorting to an analogy that will allow
to solve the problem of finding the DM soliton in a mo
efficient manner. Temporal pulse motion inz @given by
u(t,z)# is analogous to thez evolution of a spatial amplitude
u(x,z) in a one-dimensional grad-index medium~a planar
waveguide!. The refractive index variation of the waveguid
is effectively induced by theu field through the nonlinearity
and it is thus dependent on thez coordinate as well. At dif-
ferentz’s, due to the local index variation, besides the guid
modes, there are radiation modes that correspond to pr
gating waves with high axial angles. Waves with high ax
angles are the first ones to be eliminated by the radia
process. In terms of the propagation constant of these wa
b, the higher angles correspond to the smaller values ob.
After some distance, most of the nonradiated power accu
lates in the more paraxial modes, i.e., those having the la
values ofb. In this way, the projection of the wave ampl
tude onto the modes with higher propagation constant at
ferentz’s effectively eliminates the undesired effects of t
dispersive waves. On the other hand, we expect the DM s
ton to be the fundamental mode of the equivalent wavegu
generated by the nonlinearity. Consequently, the proced
to asymptotically converge to the fundamental mode can
highly accelerated by projecting at differentzj slices the am-
plitude ~as al vector! onto the eigenmode of the Hami
tonianH ( j ) with the highest value ofb.

In Fig. 4, we present theZ evolution of the modulus and
phase of the different components of thel ( j 11)/l ( j ) ratio
calculated using this projection prescription. In the station
regime this ratio has to be the same for all the compone
and equalseibS2g. Although the stationary regime can b
only achieved in the strictest sense at infinitely long d
tances, a fast convergence leads the pulse to a nearly sta
ary state after not many periods. The same asymptotical
havior is found letting the system evolve freely without t
projection prescription. However, stationariness is achie
considerably earlier when this projection prescription is
cluded. Physically, we can understand the projection pro
dure as a strong and discontinuous elimination of the non
evant radiation modes.

FIG. 5. Axial evolution of theZ-dependent Hamiltonian eigen
values starting from a Gaussian pulse (t1522). All eigenvalues
tend quickly to their asymptotic values. The highest eigenva
evolves asymptotically tobS ~horizontal dashed line!. This confirms
that the asymptotic solution of Fig. 4 satisfies the stationary non
ear evolution equation.
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We can confirm this way to stationariness in Fig. 4~a!,
where the modulus of several ratios for different compone
is shown and the convergence to 1 is apparent, and in
4~b! where the argument of this ratio tends to stabilize a
reach its asymptotic valuebS pretty soon as well~we have
normalized the phase to 2g in this figure!. From this calcu-
lation, we can obtain the asymptotic value corresponding
the scaled propagation constant of the stationary solution
given value oft1.

In order to complete the picture, we can verify in a d
ferent way that the stationary eigenvalue equation~45!
besides the self-consistency condition~46! is satisfied by
the asymptotic solution. This can be done by study
the evolution of the eigenvalues of the Hamiltonian as

e

-

FIG. 6. Convergence of the soliton parameters with the num
of modes N (t1522). ~a! Propagation constant,bs . ~b! Peak
power,P0. ~c! Root-mean-square width,s.
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function of Z. In order for the eigenvalue equation for th
soliton to be fulfilled, the propagation constant of t
asymptotic stationary solution obtained previously has to
incide with the highest of theHS eigenvalues. In Fig. 5, we
first observe how the eigenvalues of the Hamiltonian beco
constant quickly, indicating that the transient to the stati
ary regime is compatible with that obtained before for t
l ’s. And second and more important, we can clearly app
ciate how the highest eigenvalue of the Hamiltonian tend
the propagation constant of the asymptotic stationary s
tion. This property shows that the asymptotic solution is
deed a stationary nonlinear solution of the exact evolut
equation in first-order perturbation theory. In this way, af
restoring the unscaled variables, we prove that the sol
propagation constant is of the formbS52g/L f (t1)
1O(g2), where f is a universal function oft1 that can be
calculated by the previous procedure.

Next, we perform an analysis of our results in terms of
number of modes,N, used in our Hermite-Gauss expansio
In Fig. 6, we plot the propagation constantbS , the peak
powerP0, and the root-mean-square width of the DM solit
s, as a function ofN. We observe that the process is clea
convergent with the number of modes. In order to confi
the convergence withN of the soliton solution obtained b
solving the master equation~42! using the projection
method, we have simultaneously performed a numer
check of the stability of the different solutions calculat
with different values ofN. First, we have obtained the solito
solutions that solve the stationary master equation for dif
ent N’s. Then we have used them as the initial condition

FIG. 7. Long-distance evolution of the master equation solito
~a! for N510 and~b! for N52. Evolution reachesZ520, which,
after properly restoring dimensions, corresponds to a physical
tance of 20L/(2g). For a standard DM communication system,g
'0.05 andL'100 km, so that the maximum distance would
equivalent to 20 000 km.
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our numerical split-step Fourier method to simulate th
evolution over many dispersion periods. The stability of t
different solutions withN is apparent in Fig. 7, where w
compare the evolution of the modulus of the soliton amp
tude for N510 andN52. As expected from the conver
gence pattern represented in Fig. 6, theN510 solution pro-
vides not only a qualitative approximation to the exa
solution, but an accurate description of the DM soliton pro
erties. The distance here considered is large enough to g
antee that the accumulated nonlinear phase (bSZ) is mean-
ingful ~larger than 2p). This parametric study shows th
accuracy of our approach and provides a criterion to de
mine the adequate number of modes required for a gi
purpose~see also@21#!.

Finally, we have also performed and alternative check
the master equation by comparing the evolution of theN
510 soliton solution given by the master equation~using 15
and 20 Hermite-Gauss functions! against the results provide
by the split-step Fourier code for the same initial conditio
i.e., those plotted in Fig. 7~a!. In Fig. 8, we represent the
error of the imaginary part of the difference (u2ume) at
every spatialzj slice, whereu is the pulse amplitude calcu
lated numerically andume(t,zj )5(nln(zj )h̄(t)e2t2/2 is the
amplitude obtained by integrating the master equation~42!
using 15@Fig. 8~a!# and 20@Fig. 8~b!# Hermite-Gauss func-
tions. In this case, we define the error as the absolute valu
these differences. Notice that the errors decrease when
increase the number of modes that we use to describe

:

s-

FIG. 8. Error of the imaginary part of the difference (u2ume) as
a function of the distance for the low radiating pulse of Fig. 7~a!: ~a!
including 15 Hermite-Gauss functions in the master equation
~b! including 20.



e
e

h
th

to
rs
r
on
th

a
s

na
od
ze
io
ic
b

his
lse
the
tion
e-
ver-
ted
nu-
per
ons
M

us,

ssor
he

PRE 62 7329ANSATZ-INDEPENDENT SOLUTION OF A SOLITON IN . . .
master equation~42!. In Fig. 8, we also observe that th
errors grow faster for larger values of time. This is the tim
domain that is more sensitive to the number of modes. T
fact is related to the existence of residual radiation since
soliton with N510 modes is, after all, an approximation
the exact solution and, therefore, generates week dispe
waves. Dispersive waves require an increasing numbe
Hermite-Gauss modes to describe their evolution over l
distances. A complete analogous result is obtained for
real part of the difference (u2ume).

VI. CONCLUSIONS

We have presented a method to describe both the fast
slow dynamics of pulse evolution in strong DM system
Nonlinearity is treated perturbatively and its effects are a
lytically calculated by means of a Green-function meth
specially adapted to DM systems. This adaptation is reali
through the novel concept of proper length. The descript
of the pulse evolution, in both the fast and slow dynam
regimes, is ansatz-independent since no assumption a
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the properties of the solution has been utilized. Using t
approach, we have found that a nonlinear solitonlike pu
appears as a stationary solution of the Hamiltonian of
DM system. We have studied the accuracy in the descrip
of the soliton solution in terms of the number of Hermit
Gauss modes used in our approach finding a nice con
gence pattern. Finally, the validity of all the results presen
here has been explicitly checked by means of alternative
merical simulations that show the consistency of the pro
length perturbation theory. We conclude that the equati
obtained for describing the slow and fast dynamics of a D
system are exact in first-order perturbation theory.
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