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Ansatz-independent solution of a soliton in a strong dispersion-management system
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We introduce a theoretical approach to the study of propagation in systems with periodic strong-
management dispersion. Our approach does not assume any ansatz about the form of the solution nor does it
make use of any average procedure. We find an explicit solution for the pulse evolution in the fast dynamics
regime(distances smaller than the dispersion peridtle also establish the equation of motion governing the
slow dynamics of an arbitrary pulse and prove that the pulse evolution is nonlinear and Hamiltonian. We solve
this equation and find that a nonlinear solitonlike solution occurs self-consistently in the form of an asymptotic
stationary eigenfunction of the Hamiltonian.

PACS numbeps): 42.65.Tg, 41.20.Jb

[. INTRODUCTION solution occurs self-consistently in the form of an asymptotic
stationary eigenfunction of the Hamiltonian.
A lot of effort has been devoted recently to the under-

standing of nonlinear electromagnetic propagation in || PROPER LENGTH METHOD FOR FAST DYNAMICS
dispersion-managemenDM) systems. The experimental EVOLUTION
feasibility of this kind of propagation has been demonstrated . L o . .
in stretched-pulse lasef&] and optical communication sys- Of”_ starting p(_)mt is the periodic dispersion nonlinear
tems[2], thus drawing considerable interest for its technicalSChr@inger equation,
advantages with respect to traditional soliton transmission 5
techniques. Pulse evolution presents a very peculiar behavior u_ iz) Jau +idlul? 1)
in DM systems where dispersion is periodic and changes its oz~ 72 Iat? Py,
sign along the fiber. Like media with constant negative dis-
persion, where stationary solitons were known to exist longyhereD(z) is the periodic dispersion andlis the nonlinear
ago[3], DM systems seem to possess solitonlike solutionggefficient.
that behave as stationary pulses at long distances. However, A |inear fiber with homogeneous dispersion is a particular
they evolve very differently within one dispersion period, case of Eq(1), whereD(z)=D and §=0. In such a case,
where they experiment a severe compression-broadeninge differential equation is identical to a ScHinger equa-
process not present in ordinary solitons. Although a lot ofion for a one-dimensionallD) free particle where plays
work has been done to provide a suitable mathematical dgne role of time and the role of position. It is well known
scription of this new type of evolution, most of it relies on that a suitable description of the wave-function evolution can
the assumption of an ansatz, or a specific property, about thgs given by introducing the unitary evolution operatift)
solution that is sought. Variational methods are intrinsically — exp(—iHt), where H is the free Hamiltonian H
built on a trial function for the solutiof4-11]. Average _ —1/2ma% 9x2). When applied to our case of interest, this

dynamics methods provide evolution equations for averageeans that the vector representing the field at positican
quantities, which can be solved under certain assumptionge \ritten as

about the form of the solutiofl2—15. Another approaches
resort to numerical analysf46] or to truncated modal evo- P
: . . u
lution equationg17]. lu(z))=e""M?|u(0))e—=
Using an adapted Green-function formalism for DM sys- 9z
tems, we can give a description of the pulse evolution at any
position inside one dispersion peridfdst dynamicswithout ~ whereH = —(D/2)(5%/dt?).
using any ansatz or assuming any specific property. Our We observe that a necessary condition for the above rela-
method is especially well adapted to study strong DM systion to be true is that the Hamiltonian is time-independent
tems since it incorporates a perturbative treatment of théz-independent, in our cagelf the fiber dispersion varies
small parameter controlling strong DM effects. In addition, with z, thenH—H(z) and the previous relation is no longer
we derive the equation that provides the global evolution otrue. However, let us imagine an alternative evolution prob-
a pulse after many dispersion periddow dynamics with- lem where the evolution parameter is given by a different
out considering any average or truncation procedure. Thigariable, r, that we will call proper lengthfor reasons that
equation is exact in first-order perturbation theory. Finally,will become apparent soon. By definition, this evolution
we solve this equation and find that a nonlinear solitonlikeproblem corresponds to a homogeneous fiber vtk 1.

D d%u

_IE?’ (2

1063-651X/2000/6@)/732010)/$15.00 PRE 62 7320 ©2000 The American Physical Society



PRE 62 ANSATZ-INDEPENDENT SOLUTION OF A SOLITON IN . .. 7321

Thus, following the previous equivalence expressed in Eqgthe proper length functiom(z) in Eq. (1) is simple. We
(2), the pulse field for this problem, now( ), will satisfy divide both sides of Eq(l) by D(z), use the equivalence

142 1 édu 1 du du

— a—iHT &_U:_ _ _ —
o) =e w5 =i a2 © D(2) 9z 7/(z) 9z 97’

)

Up to now, both problems are unrelated. At this point, let

and introduce the-dependent rati =45/D sinceD
us assume that is a function ofz, r=7(z). Then, Eq.(3) P o(7) S

is z-dependent, it also depends erthrough the inverse re-

still holds. lation z= 7~ 1(7)]. This equation becomes, in thevariable,
_ Ju 1 5%u
— a—iH7(2) _— == — Ju “u
lu(r(2)))=e |u(0)>®&T(Z) "2 2 @ ——=—i5—+ig(n|ul’u, ®)
ar 2 ot2

It is clear that, in this case, E(R) appears as a particular ) ) )
case of the above equation whefz) =Dz. In the most gen- where, for convenience, we are using the same notation for
eral case, however, the homogeneous problem in the prop¥f7) and u(z) provided there is no confusiofbefore we
length 7 maps into a differenz-evolution problem. This is have distinguished between theno(z)=u(r(z))]. The
easily checked by performing the change of variabtle 7-dependent functiom(7) acts now as an inhomogeneous
—z=dld1(2)—[ 17" (2)](9/z)). The differential equation nonlinear coupling and has dimensionsTof2. It is conve-

satisfied by the pulse field in thevariableli(z) =u(#(z)),is  nient to use the dimensionless time variablest/ty, 7

thus = 7/t3, andg=gt3, wheret, is a typical time scale of the
problem, e.g., the initial pulse width. Equatié8) remains
au  7(z) é%u exactly the same but with, t, and g substituted by their

9z ' 2 ?- (5 normalized counterparts. For this reason, and from now on,

we will consider all time variables properly normalized, al-
though we keep using the unbarred notation.

The normalized coupling constant has an interesting
physical meaning. Its absolute value is merely the ratio be-
tween the dispersion and nonlinear lendths/Ly, , defined

T’(z)=D(z)<:m-(z)=szz’D(z'). (6) as

A direct comparison with Eq(l) for the linear case re-
veals the following crucial relation:

2
This property shows that any inhomogeneous linear prob- Lp=
lem, given by az-dependent dispersion functidd(z), is
equivalent to a homogeneous problem with disperdibn
=1 in the proper length functiom(z), the relation between ~ The dispersion length, and the nonlinear length
both being given by Eq(6). In the general case, the proper provide the length over which the dispersion and nonlinear
length ~ has no length dimensiongr]=T2. However, since effects become important for pulse evolution along a fiber of
it plays the same role asin the wave equation, we will keep lengthL. By comparing these three lengths, we can deter-
this name for it. The proper length has a clear physical mearinine which effects are relevant or not for pulse propagation.
ing. According to the integrated expression in Ef), it  We will assume here that nonlinear effects are less important
represents the accumulated dispersion over the distance ifan dispersion ones, so thap~L and Ly >Lp, and
terval under consideration. However, here, in its condition oftherefore the effective coupling functiar(7) will be small.
evolution variables plays a different role, which turns out to Notice that the coupling functiog(7) is not constant but
be very particular in DM systems. In a DM system, wherePosition-dependent and it will have to be treated carefully. In
the sign of dispersion changes along one period, the prop@fder to introduce a real constant parameter,gidie the
length 7, unlike the original parameter evolvesdifferently ~ maximum value that thé /Ly, ratio can reach over one
in the positive and negative group velocity dispersigivD)  dispersion period. Thefg(7)|<gV 7, and we can write the
regions[dr/dz=D(z)]. There is a forwardordinary evo-  coupling constant function ag(r)=gl(7), where [I(7)|
lution in the positive GVD regions, whereas evolution is re-<1V 7. In this way, we can give a rigorous perturbative ap-
versed(backward in the negative GVD sections. For this proach in terms of the now real coupling constgnand
reason, one finds the typical breathing behavior of pulse evo=alculate, in principle, arbitrary order corrections to the pure
lution even in linear DM systems, whan=0 (see[17], for ~ dispersion pulse solution.
instance. We are interested in finding a solution of E¢g),
Now, we consider the general case of propagation in &(t,7;9), that exists in the limig—0. We will assume that
nonlinear medium with inhomogeneous dispersion, dea small nonlinearity produces small perturbations in the
scribed by Eq(1). We have learned how to deal with the pulse profile, so that the amplitude can be expanded in a
most general case afdependent dispersion in the linear POWEr Series Iy,
case. In the nonlinear case, it is also very interesting to in-
troduce the concept of proper length. The way of introducing u(t,7;9) =Uu(t,7) +guy(t,7) +guy(t,7)+---. (10)

2 and L =1 (9)
|D| NL 5
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We plug now the previous expansion in both sides of (Bj. ( g iD(2) P ) 5
and equal coefficients of the same ordegin — — |G (t—t',z=2")=68(t—t")d(z—2")
To lowest order gz 2 ¢
17
2
%z_i }w (11  and the advanced conditio® . ~ 6(z—z’) [6() being the
ar 2 gt? Heaviside functioh The relation betweerG, and the r
Green functiorG depends on the sign of the dispersion. This
To orderg is so because the— r mapping is not one-to-one and, there-
fore, the change of variable becomes ambiguous. In order to
gup 1% avoid this ambiguity, we divide thg—L/2,L/2] interval in
o —i 2 T’LpO(t ' 7)s 12 smaller subintervald; of alternating dispersioB; . In each

of these subintervals with a well-defined sign of the disper-
where po(t,7) =il (7)|ug|?u, acts as a density in an active S0 thez— 7 mapping is one-to-one, and the ambiguity

medium. disappears. We choose now a g'ene.ric subintekyab per-
In general, form the change qf vanab_le. Dividing Eq17) by Di(z).
=d7(z)/dz,ze A;, introducing the proper length function
au 1 8%y, 7(z), and taking into account the property of thdunction,
n = — —_—
iy 2 S+ pnoa(t,7), (13

8(1(2)—7(2'))= 8(z=7")

ID()I

where the (—1)th order “density,” p,_1, can be con-

structed systematically from previously known lower order B

solutions. ~ sgnD;)Di(2)
In this way, we have transformed the original nonlinear

equation in a set of linear differential equations that can beve obtain the equation for the Green function in theari-

solved recursively. All the nonlinear corrections verify inho- able for positive and negative dispersion subintervals,

mogeneous linear equations, with source terms, that involve

8z—-27'), (18

the same differential operatog/dr+ (i/2)d%/ot?. All of z? 2 , o , ,

them can be solved by means of the Green-function method, 37+ 5 ) Gi(t—t',7=7")=sgn(Dy) 8(t—t") 6(7— 1),

The associated Green problem to be solved first is (19)
J i &2 where 7= 7(z) and 7' =7(z'). Notice that in the positive
273 P G(t—t',7—71")=o(t—t")6(r—1"). GVD sectors we obtain the standard Green-function equation

for an ordinary forwardr propagationG~ 6(7— 7'). How-
ever, for negative GVD we obtain an extra minus sign in the
right-hand side of Eq(19). This is a consequence of back-
ward 7 propagation,G~ 6(7' — 1), because then the de-
rivative produces an extra sigidd(r' —7)]/dr=— (7

14

According to the Green-function method, the solution for
the field has to be of the form

—-7').
up (t, T)_J dt’f dq- G(t—t',7—7")p(t',7"), The solution of this Green-function problem is well
Tmin 15 known. In the positive GVD intervals, we have
. _ G, (t,t";2,2)=G,(t—t',7—17')

wherer,, and 7,5, are the minimum and maximum, respec-
tively, of the interval where the function is defined, ang =0(t7—7")Go(t—t",7—7"),
is a generic source density function. However, we have to be
very careful in defining the integration domain in theari- where r=17(z), 7' =7(2"), (20

able. As we have already seen, evolutionziis unidirec-
tional whereas evolution i is forward or backward de- Whereas for the negative GVD sections,
pending on the sign of the dispersion. Therefore, the -

integration domain is ambiguous in although it is not in Gi(tt;z2,2')=G_(t—t',7—7')

the z variable. Consequently, in order to deal with the inte- — 07— )Go(t—t', 71— 1)
gration limits of Eq.(15) properly, we transform the integral 0 ' '

in 7" in an integral inz’. The result is where 7= 1(2),7' = 7(2'). 21)

UNL(tIZ):f dt’fuz dz’(~3+(t t’;z,z’)}B(t’,z’), (16) Notice that these equations shov_v, as pointed Ol_,lt b(_efore, how
L2 7 evolution occurs in the same directionzasvolution in the
positive GVD intervals > 7', whenz>z2"), while just the

where p=D(2)p, and G, represents the advanced GreenOPPOsite occurs in the negative GVD sections<(r’, when
function in thez variable, satisfying z>7"). The form of G, is completely determined by the
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above expressions, because the functignis merely the high order terms can be extremely involved. In any case, it is
representation of the unitary evolution operator in the timeof great interest to have a completely general expression that

domain, can be used to demonstrate general properties, valid to all
_ orders in perturbation theory, that will affect any solution for
Go(t—t',7—7')=(tle M= )|t") which a series expansion can apply.
1/2
=ei(”’4)( ! ) e it=t)2=7") lIl. ANALYTICAL RESULTS FOR THE PROPAGATION
2m(r—1') . ’

OF A GAUSSIAN PULSE

(22 In the first part of this section, we will find the leading
These properties allow us to write a closed expression fotferm of the perturbative expansida0), that is, the linear
e term ug. This is given by the operator relation E@) ex-
o pressed in the time domain as follows:

G.(t,t";2,2)=0(z—2")Gy(t—t',7(z) — 7(2')). (23

Now we split up the integrall6) in a sum over the partition uo(t,r(z))=J dt’'Go(t—t',7(z))ug(t’,0), (26)
[—L/2L/2]1=UN JA;, where Aj=[z_1,z] (we assume
thatze A,,, 1=n<N),

where

N
om(t2)=3, [t [ azo-2) Golt—t" 7(2)=(tle "72]t")

~ 1/2
XGot—t',7(2)—7(Z"))p(t',Z") — @i(74) e il(t=t)?27(2)]
- 277(2) '
Zi
=> fdt’f dz' Go(t—t',7(2)— 7(2)) (27)
=1 Zi_q
- (2 , , This relation is valid for any propagating pulse shape. An
Xp(t',z )+f dt f dz'Ge(t—t',7(2) important case of propagation is that of a Gaussian pulse. Let
-1 us assume that at the initial fiber positigf[ 7(zg) =0, ac-
2 )p(tZ). (24)  cording to Eq.(6)], the pulse has the Gaussian form
The previous equation solves the ambiguity in the defini- uo(t,O)ze‘tz’Z‘S, 28)

tion of the integration domain of the Green formulation in
the 7 variable. The inverse of(z’) is now a true single-
valued function in eachd;. Under these conditions, the wheret, is the pulse width. Then, a straightforward use of
change of variableg’ — 7’ is now allowed in each of the the evolution integral(26) yields the well-known expression
integrals appearing in the sum ovAr's in Eq. (24). The for the field at positiorz [17],

Jacobian of the transformatiofdr(z')/dz'] ™2, is precisely

the inverse of the dispersion function i . The result is

~ t .
(recall thatp=Dp) 0 o tH2A-ina]) (29)

Uo(t,T(Z))Z m
0

n—-1
7

— ! ! ! ! ! !
U (1) = 21 at leT Golt=t',r=7)pi(t,7) In fiber ring lasers or in dispersion managed communica-
tion systems, dispersion changes in the different sections the
+f dt’ j’ d7' Go(t—t',7— 7Y pp(t!, 7). fiber is madg of, put sinpe gach section is fabricz_ated with the

P same material, dispersion is constant in each piece. In what
follows, we will restrict ourselves to a simple case of a DM
(25 system, namely, that corresponding to zero average periodic

The above equation gives the most general answer to trféiSPersionD(z+L)=D(z) in a symmetric dispersion map
problem of finding any arbitrary order nonlinear correctionSystem of lengti,,
once the density has been constructed out of lower order
contributions. At the same time, it incorporates the effects of —d, ze[-L2,0,
the inhomogeneity and the sign change in the dispersion. D(z)= i OL/2
Using recursively this equation and the equations giving the » ze[OL/Z.
different order terms of the densipy we could solve pertur-
batively, to any order in the coupling constapthe problem Our next step will be to find the first nonlinear perturba-
of pulse propagation in a nonlinear medium with inhomoge-ive correction to the problem of the fiber given above. That
neous and sign-changing dispersion. It is clear that, althougis, we want to evaluate the integr@s) for this case, where
the formalism is completely general, realistic calculations ofr(z) =d(|z| —L/2), andpy=il |uo|up,

(30
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ul(t,z)=—iJ dt’fT(Z)dT’GO(t—t’,T(Z)—T’) T b . . . .
° Tl 3

X|ug(t’, 7)[Pup(t’,7') + 6(2)2i Zj 20k ;

7(2) s L9f 3

XJ’ dt'f d7'Gy(t—t',7(2)—7") E’é 1.8F E

B T 17k ;

X[up(t’,7")[Puo(t’, '), (31 Bk o a . a o

where ;= —dL/(2t3) in this case. L3 0ol 002 003 004 003

Now we introduce the lowest order solutiong(t,7),
from Eg. (29), into Eqg.(31). The integration over the time

—_
)
=

oQ

variable can be done because it has the form of the linear :E:; 09 ' ' ' ' '
evolution of a Gaussian pulse. Consequently, the first-order = o¢.8sF . R . 3
nonlinear contribution is the result of an integral over the §0 * *
intermediate proper length variabte. If we sett,=1, so s 0% E
that all time-dependent magnitudes will be immediately nor- & o75F 3
malized to the original Gaussian pulse widghwe can write E
the following expressions for the linear and the first nonlin- =  %7F ]
ear correctionthe dependence af on z is always assumed E 0.65 F . a3
although it is not written explicitly. . @ X . .
) 0.01 0.02 0.03 0.04 0.05
t 1 (b) g
Holt:2) 1—iTeX’{ 2 (1—”)} (32 - o
FIG. 1. Numerical consistency check of the analytical solution
and for evolution within one period(a) Error in the real part of the
functional difference §—uy—gu;)/g? as a function of the cou-
1 pling constantg. (b) Same for the imaginary part. We plot these
uy(t,z)=—i der’ errors forr;=—1.5 (squaresand ;= — 2 (circles.
0 V(1=it)A(7,7")

standard split-step Fourier proced{il®]. On the one hand,
[ 34iq we calculatg the first nonlinear amplitude using the ana- _
xexd — — + 0(2)2i f’dq_, lytical equation(33). On the other hand_, we evaluate numeri-
2\ A(r, ) - cally _the Co_mplete pulse profll_e amphtuduét,z_,g) through
our simulation code. We obtain the full nonlinear contribu-
1 t2( 3+iq+ tion within one period by substracting the linear pajtfrom
ex ( ) , the previously numerically evaluated functian Now we
V(1-ir")A(7,7") can compare directly the first nonlinear correctgpm with
(33) this full nonlinear contribution. According to the perturbative
expansion(10), they should agree up to ordgf. In Fig. 1,
whereA(7,7')=1+3i7 + (7' —3i). we represent the error in the real and imaginary parts of the
Equation(33) gives the value of the first nonlinear correc- functional difference {—u,—guy) divided byg? as a func-
tion at an arbitrary point of the fibex. It is also of great tion of g, where the error is calculated as the maximum of
interest to know the net effect of the nonlinear perturbatiorthe absolute value of these differences in both the time and
after the Gaussian pulse has completed an entire round. Thfss [ —L/2,L/2] domains. In order to check the consistency
contribution is the value ofi, at the pointz=L/2. The as- ©f the expansion, we plot these errors for two different val-
sociated proper length is zero, which makes this contributiotes 0fr;. In all cases, the error curves are consistent with the
easier to handle, O(g?) approximation. This check shows simultaneously the
precision achieved in the analytical calculation and the con-
L 0 1 172 sistency of the proper length Green-function method.
t’E) =2iJ d7r’ ﬁ) We also present in Fig. 2 and Fig. 3 thesvolution for
™ 1+2i7"+37
p[ t2(7' —3i)
xXexg — ——|.
67 —2i

X

2

A(r,7")

Uy

both the total and the first nonlinear pulse amplitudeand

u,, respectively. Figure 2 has been evaluated using the split-
(34)  step Fourier numerical method, whereas Fig. 3 is obtained

from the analytical expressiof83). Notice, however, that

according to the accuracy of the expansion, represented in

In order to check the validity of the analytical expressionFig. 1, the latter plot would not be distinguishable from that

for the first-order correction, we have performed an alternaef the full nonlinear correction provided by the numerical
tive numerical simulation of the Gaussian pulse evolution insimulation. For the same reason, the analytical perturbative
a dispersion managed system with dispersion map given bsesult for u would provide the same plot as the numerical
Eqg. (30) within one period. This simulation is based on anmethod used in Fig. 2.
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—L/2+jL characterizing the reference planéhen we can

obtain the value of this component at the next reference
plane atz; ., as follows:

A AD+HIND +O(g?),

lu(t,2)1

N20 .
HO=T M Tokmph . (35)

where T ymp is aj-independent fourth-order tensor that de-
pends onr, exclusively. TheT tensor can be analytically
calculated and its value is given by the following expression:

Tnkmpzankmpanmpr (36)
FIG. 2. z evolution, within one dispersion period, of the modu- ke
lus of the total amplitudelu|, for a Gaussian pulse with; = — where the normalization constaNt, is
andg=0.04.
IV. EXACT DERIVATION OF THE EQUATION Nnp=V Vm2m (37
OF MOTION IN THE SLOW DYNAMICS REGIME and
If we are interested in the behavior of the pulse amplitude )\ [Ntk (mep)2
always at a particular reference plane of the period of the _ fod , 1 1+ir 18
fiber, sayz=—L/2+jL,j € Z (the beginning of the negative Tnkmp— " T Vit 2\ 1—is . (39

dispersion section we need only to know the values of

andu, at 7(L/2)=0. In such a case, the first summand in Eq. % _

(33) vanishes and the general expression simplifies. A anmp:f dx [I hoexp—2x%). (39
Gaussian pulse modifies its amplitude and phase even in a —e I=nkmp

single round, as is apparent from the analytical result given Using the definition of the incomplete beta functitsee
in Eq. (34). A similar result is obtained for a pulse described [20]) we can write

by an arbitrary Hermite-Gauss function. In general, an

arbitrary pulse written as a linear combination of the normal- 1+ 1—v 1+ 1—v

ized Hermite-Gauss basisu(t,r)=En)\n(7-)ﬁn(t)e“2/2 Tnkmp:i[B(1+irl)/2 o o )_51/2 2 ' o ) '
(fh.he =4, ), will evolve over one dispersion period (40)
and will experiment a net variation when a full round is

completed ¢=0). The amount that an arbitrary pulse Where

changes after one dispersion period carex&ctlyevaluated, y=n+k—m—p. (41)

up to orderg?, because we know how to calculate analyti-
cally the variation experimented by the elements of the e T tensor enjoys nontrivial symmetry properties: it is
Hermite-Gauss ba§|§ in which the pulse am_plltude IS €Xsymmetric under the permutations—k and m«p and, in

panded. More explicitly, we can evaluate the increment &Xaddition, verifies the self-adjoint-like CONGition (g (nig
penm_ented by the (_:omponents of the pulse amplitude in the . Because of these properties the matd) is
Hermite-Gauss basis, thevector, up to ordeg?. Let\{) be (nky(mp)

e self-adjointHD=HWT at all reference planes. This is an
the n component of the pulse vector at the spatial stice important property for the dynamics, because upi@?)

terms, Eq.(35) is equivalent to the matrix equatiog ™%
=exp(HPL)A\D, and thus the self-adjoint character laf)
gives rise to a unitary evolution operator. The unitary char-
acter of the pulse evolution guarantees the conservation of
the pulse powef |u(t)|?==,|\,|? in first-order perturbation
theory. The above equations can be considered as a discreti-
zation of a differential equation in a continuous variaile
such that its discretized values coincide with the positions of
the reference planeg . This is a rather realistic situation
because we are interested in the slow dynamics of pulses
especially after very long distances, much larger than the
dispersion period.. Since the lattice spacing of the discreti-
zation isL and it is small over long distances, we can
FIG. 3. z evolution, within one dispersion period, of the modu- formulate the continuous counterpart of E85) in the form
lus of the first nonlinear correctiog]u,|, for a Gaussian pulse with of a differential master equation for the slow dynamics
7,=—2 andg=0.04. evolution:

o
=

gl (t,2)!
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equation shows that the slow dynamics of an arbitrary pulse -~ [ R

A\, (2) x10°
_;—Z:Hnm(Z))\m(Z)‘l‘O(gz), (42) 10 ALMULRES LRI L I
where as beforéin(Z) =29/LA (2) Tokmphp(2).- & st - -—fi .
Either in its discrete or continuous form, the evolution = [ - = ]

is nonlinear and Hamiltonian, as in ordinary solitons. How- z op-——"7"""~-- - ]
ever, the explicit form of the evolution is different. It is clear = = i
that theH matrix operator plays the role of a nonlinear self- ‘L sL = h
adjoint Hamiltonian governing the slow dynamics evolution ~ ™} - 1
of the pulse propagation. It is important to stress that no [ ) ]
ansatz nor variational approach has been followed to obtain 10 L L Leeiot 1 L L L ]
the previous evolution equation. Although from the formal 0.0 02 0.4 0.6 0.8
point of view our master equation can have some similarities (a)
to an average equation, the way in which we have obtained it
differs qualitatively from standard average procedures. The 0.674 [T
proper length Green-function method permits the determina- i ]
tion of the pulse amplitude exactly within one period in first- o 0'6735; '
order perturbation theory for an arbitrary dispersion map, S 0673 E 3
independent of the initial pulse profile. In particular, we can S : £=0.67173 ]
evaluate the pulse amplitudexactly in this order of pertur-  ~  06735F E
bation theory at the end of the dispersion map. This is the % 0.672E E
information included in the master equatid42), which < F 3
therefore represents a different approach to the slow dynam. 20 06715} E
ics evolution problem from that adopted by averaging the <C 0.67105. -
original equation of motion18]. T
Although the master equation was derived for a dispersion 0.6705 = =02 03 04 05 06 07 08
map such as that presented in E2[)), our method is flexible
and permits us to incorporate other dispersion maps that (b) 4

would lead to slightly different evolution equations. For ex- FIG. 4. Axial evolution of the components of thel™1/\ ()
ample, if the average dispersion is different from zero, one

n prove that the nonlinear Hamiltonian ratds modi fatio for an initial Gaussian pulse using the projection prescription.
can prove that the noniinear Hamiltonian Operaias modi- g hormajized axial distancgis dimensionless and,=—2. The

ﬁ?d by .the _presence Of_ a Iinear_ term. If_’ besides, the averagfmher of Hermite-Gauss functions used is (H) Asymptotic evo-
dispersion is small, as is usual in this kind of system, tBen jution of the modulus to ongb) Asymptotic evolution of the nor-
can be treated perturbatively to obtain malized phase (phasg/pto the stationary propagation constghy
(horizontal dashed line
dh(Z2) — _ .
—i an =DHC Am(Z)+H2E (Z,D)\(Z)+O(g?,D?),

(43

Hsas= Bsas, (45)

besides the self-consistency condition
whereH? is a constant second-order tengimdependent of

7, andg) andH?! is given by 29
(HS)nm:T(aé)ankmp(as)p- (46)
N g —
Hin(Z.D) =20 M (D) Thpnd DING(2),  (44)

In order to preserve the highest degree of generality, we
- perform the following scale transformations in the evolution
where T(D) includes the first-order correction to the zero equation:Z— (2g/L)Z and H—(L/2g)H [consequently3
average dispersion tensor —(L/2g) B as well. In this way, the evolution equation be-

These equations provide the exact slow dynanfieeg  comes simultaneously dimensionless and independeit of
distance evolution of an arbitrary pulse in a strong DM sys- andL. Only the r; dependence remains through the tergor

tem in first-order perturbation theory. In order to solve the soliton equations, we will follow a
strategy based on physical grounds. Experimental and nu-
V. THE DM SOLITON AS A STATIONARY SOLUTION merical results indicate that a Gaussian pulse launched in a

DM system will evolve to turn into a stationary solution at
The question of the existence of soliton solutions can béong distances. Physically, as in ordinary solitons, this evo-
put forward in an easy way now. A soliton will be a station- lution corresponds to a radiation process in which the pulse
ary solution of the long-distance evolution equation, whichreshapes as it evolves until it reaches its asymptotic station-
in its continuous form will be given by g(Z)= ase'#. ary form. This radiation has the form of dispersive waves
Therefore, it will have to fulfill the stationary matrix eigen- that modify the pulse energy as the input pulse evolves to
value equation, become the fundamental solitdh9].
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FIG. 5. Axial evolution of theZ-dependent Hamiltonian eigen- E ' ' o E
values starting from a Gaussian pulsg € —2). All eigenvalues 0.55F 3
tend quickly to their asymptotic values. The highest eigenvalue 055_ . 3
evolves asymptotically t@s (horizontal dashed lineThis confirms “E ]
that the asymptotic solution of Fig. 4 satisfies the stationary nonlin- 045F E
ear evolution equation. a° 0.4 _ _

In what follows, we will face the radiation problem in an 035F E
alternative way by resorting to an analogy that will allow us 03E E
to solve the problem of finding the DM soliton in a more - E
efficient manner. Temporal pulse motion m[given by 0.25 3 . o o e s ]
u(t,z)] is analogous to the evolution of a spatial amplitude = . L L1
u(x,z) in a one-dimensional grad-index mediui@ planar 2 o 1214
waveguide. The refractive index variation of the waveguide (b
is effectively induced by the field through the nonlinearity,
and it is thus dependent on tzecoordinate as well. At dif- _ T T ——T
ferentz's, due to the local index variation, besides the guided s . e e e
modes, there are radiation modes that correspond to propa: 13F
gating waves with high axial angles. Waves with high axial :
angles are the first ones to be eliminated by the radiation L2r
process. In terms of the propagation constant of these waves 11 3
B, the higher angles correspond to the smaller valueg.of b “E
After some distance, most of the nonradiated power accumu- 1.0F
lates in the more paraxial modes, i.e., those having the larger ;
values of 8. In this way, the projection of the wave ampli- 09F
tude onto the modes with higher propagation constant at dif- F .
ferentz’s effectively eliminates the undesired effects of the 08 é 1'0 1'7 ' 1'4 '
dispersive waves. On the other hand, we expect the DM soli- © -

ton to be the fundamental mode of the equivalent waveguide
generated by the nonlinearity. Consequently, the procedure

. FIG. 6. Convergence of the soliton parameters with the number
Lq asymptotically converge tq the fundament.al mode can bgf modesN (7, g 2). (@ Propagatior? constani, . (b) Peak
ighly accelerated by projecting at differemtslices the am- ower, Py, (¢) Root-mean-square widtlor
plitude (as a\ vectop onto the eigenmode of the Hamil- P o q "
tonianHU) with the highest value of.

In Fig. 4, we present th& evolution of the modulus and ~ We can confirm this way to stationariness in Figa)4
phase of the different components of th8 "/\() ratio  where the modulus of several ratios for different components
calculated using this projection prescription. In the stationarys shown and the convergence to 1 is apparent, and in Fig.
regime this ratio has to be the same for all the component4(b) where the argument of this ratio tends to stabilize and
and equalse'#s?9. Although the stationary regime can be reach its asymptotic valugs pretty soon as weliwe have
only achieved in the strictest sense at infinitely long dis-normalized the phase tog2in this figurg. From this calcu-
tances, a fast convergence leads the pulse to a nearly statidation, we can obtain the asymptotic value corresponding to
ary state after not many periods. The same asymptotical béhe scaled propagation constant of the stationary solution at a
havior is found letting the system evolve freely without the given value ofr;.
projection prescription. However, stationariness is achieved In order to complete the picture, we can verify in a dif-
considerably earlier when this projection prescription is in-ferent way that the stationary eigenvalue equatid)
cluded. Physically, we can understand the projection procesesides the self-consistency conditio#6) is satisfied by
dure as a strong and discontinuous elimination of the nonrethe asymptotic solution. This can be done by studying
evant radiation modes. the evolution of the eigenvalues of the Hamiltonian as a
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FIG. 7. Long-distance evolution of the master equation solitons
(@) for N=10 and(b) for N=2. Evolution reacheZ= 20, which, (b) K7 Time (PS)
after properly restoring dimensions, corresponds to a physical dis-
tance of 2Q/(2g). For a standard DM communication systegn, FIG. 8. Error of the imaginary part of the differenae u,,¢) as
~0.05 andL~100 km, so that the maximum distance would be 3 function of the distance for the low radiating pulse of Fig)7(a)
equivalent to 20 000 km. including 15 Hermite-Gauss functions in the master equation and

. . . (b) including 20.
function of Z. In order for the eigenvalue equation for the

soliton to be fulfilled, the propagation constant of the ) ) ) ) ]
asymptotic stationary solution obtained previously has to co@Ur numerical split-step Fourier method to simulate their
incide with the highest of thels eigenvalues. In Fig. 5, we eyolutlon over many_dlsp_ersmn penods. The stability of the
first observe how the eigenvalues of the Hamiltonian becom@ifferent solutions withN is apparent in Fig. 7, where we
constant quickly, indicating that the transient to the stationcompare the evolution of the modulus of the soliton ampli-
ary regime is compatible with that obtained before for thetude for N=10 andN=2. As expected from the conver-
\’s. And second and more important, we can clearly appred€nce pattern represented in Fig. 6, Mve 10 solution pro-
ciate how the highest eigenvalue of the Hamiltonian tends tyides not only a qualitative approximation to the exact
the propagation constant of the asymptotic stationary soluselution, but an accurate description of the DM soliton prop-
tion. This property shows that the asymptotic solution is in-€rties. The distance here conS|d§red is large eqough to guar-
deed a stationary nonlinear solution of the exact evolutiorfntée that the accumulated nonlinear phg8&Zj is mean-
equation in first-order perturbation theory. In this way, afteringful (larger than 2r). This parametric study shows the
restoring the unscaled variables, we prove that the solitoAccuracy of our approach and provides a criterion to deter-
propagation constant is of the fornBs=2g/Lf(ry) mine the adequate number of modes required for a given
+0(g?), wheref is a universal function ofr; that can be Purpose(see alsq21j). _
calculated by the previous procedure. Finally, we havg also performgd and alternapve check of
Next, we perform an analysis of our results in terms of thethe master equation by comparing the evolution of the
number of modesl\, used in our Hermite-Gauss expansion. = 10 soliton solution given by the master equatiasing 15
In Fig. 6, we plot the propagation constaft, the peak and 20 Hermite-Gauss functioregainst the I’e.Sl:I|.tS provujgd
powerP,, and the root-mean-square width of the DM soliton _by the split-step Fourier code for t_he same initial condition,
o, as a function oN. We observe that the process is clearlyi-€-» those plotted in Fig. (@. In Fig. 8, we represent the
convergent with the number of modes. In order to confirmeor of the imaginary part of the differencei £ uye) at
the convergence withl of the soliton solution obtained by €Very spatiag; slice, whereu is the pulse amplitude calcu-
solving the master equatiort42) using the projection lated numerically andin(t,z;)==,\n(z;)h(t)e™ 2is the
method, we have simultaneously performed a numericahmplitude obtained by integrating the master equati)
check of the stability of the different solutions calculatedusing 15[Fig. 8@] and 20[Fig. 8b)] Hermite-Gauss func-
with different values of. First, we have obtained the soliton tions. In this case, we define the error as the absolute value of
solutions that solve the stationary master equation for differthese differences. Notice that the errors decrease when we
entN’s. Then we have used them as the initial condition ofincrease the number of modes that we use to describe the
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master equation42). In Fig. 8, we also observe that the the properties of the solution has been utilized. Using this
errors grow faster for larger values of time. This is the timeapproach, we have found that a nonlinear solitonlike pulse
domain that is more sensitive to the number of modes. Thisppears as a stationary solution of the Hamiltonian of the
fact is related to the existence of residual radiation since th®M system. We have studied the accuracy in the description
soliton with N=10 modes is, after all, an approximation to of the soliton solution in terms of the number of Hermite-

the exact solution and, therefore, generates week dispersiv@auss modes used in our approach finding a nice conver-
waves. Dispersive waves require an increasing number ajence pattern. Finally, the validity of all the results presented
Hermite-Gauss modes to describe their evolution over londpere has been explicitly checked by means of alternative nu-
distances. A complete analogous result is obtained for thenerical simulations that show the consistency of the proper

real part of the differenceu(— u,o). length perturbation theory. We conclude that the equations
obtained for describing the slow and fast dynamics of a DM
VI. CONCLUSIONS system are exact in first-order perturbation theory.

We have presented a method to describe both the fast and
slow dynamics of pulse evolution in strong DM systems.
Nonlinearity is treated perturbatively and its effects are ana-
lytically calculated by means of a Green-function method We are especially grateful to Professor Hermann A. Haus,
specially adapted to DM systems. This adaptation is realizedho suggested this problem to us. One of Ag-.) acknowl-
through the novel concept of proper length. The descriptioredges his advice and kindness during his stay with Professor
of the pulse evolution, in both the fast and slow dynamicsHaus’ group. This work was financially supported by the
regimes, is ansatz-independent since no assumption aboGeneralitat ValencianéGrant No. GV98-1-79 Spain.
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